Instigating innovation by enhancing experimentation

“We don’t experiment!”, the operations manager sneered at me. “We know what we are doing. We are experts”. From the shaking of his head I could form my own conclusions. It meant that this business has a very short term focus in terms of innovation, mainly using a consensus based approach to drive incremental improvement. The irony is that the word “expert” implies learning by doing, often over an extended period. The very people that become “experts” through experimentation and trying things become the gatekeepers that promote very narrow paths into the future, thus inhibiting learning in organizations.

The aversion to experimentation and its importance in innovation is institutionalized in management. Many of the textbooks on innovation and technology management does not even have a chapter on experimentation (see below for some exceptions). Many industrial engineers and designers actually narrow the options down so early in a process or product design so that what comes out can hardly be described as an experiment. Approaches such as lean and others make it very hard to experiment as any variation is seen as a risk. In more science based industries, such as pharmaceutics, medicine and health, experimentation is the main approach to innovation.

Most manufacturers do not like the idea of experimentation, despite it being widespread in most companies. If management does not see it (or hear about it) does not mean it is not happening. This is the main problem. Lots of companies (or rather employees) experiment, but the feedback systems into the various levels of management and cross functional coordination are not working. Learning by doing is hard to do in these workplaces. Furthermore, management systems that rewards success or compliance makes learning by doing almost impossible.

Let me first unpack what I mean with experimentation.

Experimentation is a kind of investigation, or an attempt to better understand how something works. It is often associated with trial and error. Sometimes experiments are carefully planned, other times it can be impulsive (like when people press the elevator button repeatedly to see if the machine responds faster). Experiments are sometimes based on a deep insight or research, then it is almost like a authentication or proofing exercise. Other times it is done as a last resort (two attempts to get the machine to work did not work is followed by hitting it with a spanner). This could be naive even a little desperate. (Suddenly the machine works and nobody knows what exactly solved the problem). While experiments can be to prove something, I believe that not enough managers realise that experiments is a powerful way to keep their technical people happy (geeks love tinkering) and a strong way to improve the innovative and knowledge capability of an organisation. What does it matter if this experiment was successful in 1949, why don’t we try it and see if we can figure it out? Remember, innovation is a process of combination and recombination of old, new and often distant capabilities and elements.

Experiments in manufacturers happens at different levels.

  • It happens spontaneously on the work floor, where somebody needs to keep a process going. Ironically often experiments in the work space is the result of resource constraints (like trying to substitute one component/artifact/material/tool for another. A lot of potential innovations are missed by management because feedback doesn’t work, or experimentation is not encouraged or allowed.
  • Experiments could also be directed and a little more formalized. Typically these experiments originate from a functional specialization in the business, like the design office or another function. In these experiments the objective, the measurement and evaluation of the experiment is valuable for management as it could create alternative materials, processes, tools and approaches viable.
  • At a more strategic level experimentation often happens when evaluating investments, for instance making small investments in a particular process or market opportunity. It could also be about experimenting with management structures, technology choices or strategies. Sometimes the workers on the factory floor bear the brunt of these “experiments” which are not explained as experiments but rather as wise and thoroughly through decisions. In companies that manages innovation strategically, decisions at a strategic level could involve deciding how much funds to set aside or invest in tools that enable experimentation, for instance 3D printing, rapid prototyping, computer aided design and simulation, etc.
  • Accidental experimentation occurs when somebody by accident, negligence or ignorance does something in a different way. This occasionally result in breakthroughs (think 3M), and more often in breakdown or injury. Accidental experimentation works in environments where creating options and variety is valued, and where co-workers or good management can notice “experimental results” worth keeping. However, in most of industry accidental experimentation is avoided as far as possible.

The above four kinds of experiments could all occur in a single organizations. At a higher level experimentation can also happen through collaboration beyond the organization, meaning that people from different companies and institutions work together in a structured experiment.

When you want to upgrade industries that have a tendency to under invest in innovation, you can almost be certain that there is very little formal experimentation going on. With formal I mean thought through, managed and measured. Proving one aspect at a time. It is often necessary to help business get this right.

Since this series is about instigating innovation in both firms and their supporting institutions it is important to consider the role of supporting institutions. One important role for supporting institutions is to lower the costs and risks of experimentation for companies. This could be through the establishment of publicly funded prototyping or demonstration facilities. Another approach is for supporting organizations to support collaborative experiments. However, I sometimes find that supporting institutions themselves are not managing their own innovation in a very strategic nor creative way.

Helping industries to improve how to conduct experiments need not be expensive and does not necessarily involve consulting services (many institutions are not organized for this). For universities there are some interventions that align with their mandates. For instance, exposing engineering students to formal experiments with strong evaluation elements (such as chemistry students have to go through) can also make it more likely that a next generation of engineering graduates are able to also plan and execute more formal experiments. Or creating a service where industry can experiment with technology within a public institution. Or arranging tours or factory visits to places where certain kinds of experiments are done, or can be done.

Lastly, not all experimentation needs a physical embodiment. Design software, prototyping technology, simulation software and 3D printing makes are all tools that enable experimentation and that reduces the costs and risks of experiments. Furthermore, experiments need not be expensive, but they should be thought through. I often find that companies want to create large experiments when a much smaller experiment focused on perhaps one or a few elements of the whole system would suffice. Here it is important to consider the science behind the experiment (at a certain smaller scale certain materials and process characteristics are no longer reliable or representative). The experiment must be just big enough to prove the point, or to offer measurement and comparison or functionality, nothing more.

I will close with a little story. I once visited a stainless steel foundry. These businesses are often not known to be innovative, but I was in for a surprise. The CEO of the foundry had a list of official experiments that were going on. Often each experiment had a small cross functional team involved, supported by a senior management champion. The aim was not to succeed at all costs, but to figure things out, develop alternatives AND increase the companies knowledge of what is possible. Everybody in the different sections of the business knew when experiments were taking place, and everybody was briefed on the results. Even though this is a very traditional industry, this company had managed to get their whole workforce to be excited about finding things out.

I promise I will get to the how in a future post in this series.


My favorite text books on experimentation in innovation are:

DODGSON, M., GANN, D. & SALTER, A.J. 2005.  Think, play, do : technology, innovation, and organization. Oxford: Oxford University Press. (I think this one is now out of print)

VON HIPPEL, E. 1988.  The sources of innovation. New York, NY: Oxford University Press. (Despite being an old book this is really inspiring)

THOMKE, S.H. 2003.  Experimentation Matters: Unlocking the Potential of New Technologies for Innovation. Harvard Business Press.

HARVARD. 2001.  Harvard Business Review on Innovation. Harvard Business School Press.

If you know of a book more recent then please let me know.


2 Responses to “Instigating innovation by enhancing experimentation”

  1. Larry Dolley Says:

    Shawn, this is why I am of the firm opinion that recently retired employees have a wealth of un-expressed innovative ideas and experiments which are dormant due to institutional inhibition. Larry

    Sent from my Sony Xperia™ smartphone


  2. You Are What You Try | Tim Kastelle Says:

    […] time to get going. This isn’t just for software startups either. Shawn Cunningham has a great example from a small manufacturing firm he’s worked […]


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: